

THE CONVEX FLOATING BODY AND POLYHEDRAL APPROXIMATION

BY

CARSTEN SCHÜTT†

Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA

ABSTRACT

We consider the convex floating body of a polytope and polyhedral approximation of a convex body.

In [Schü-W] we found for the convex floating body K_δ of a convex body K

$$\lim_{\delta \rightarrow 0} c_n \frac{\text{vol}_n(K) - \text{vol}_n(K_\delta)}{\delta^{2/(n+1)}} = \int_{\partial K} \kappa(x)^{1/(n+1)} d\mu(x)$$

where $\kappa(x)$ is the generalized Gauss-Kronecker curvature. In particular, for polytopes these expressions equal zero. It follows from [B-L] that the order of magnitude of $\text{vol}_n(P) - \text{vol}_n(P_\delta)$ for a polytope P is $\delta(\ln(1/\delta))^{n-1}$. We give here a precise formula. It turns out that we get the same expression for P and its polar P^* . We apply this formula to estimate the symmetric distance between a polytope and a convex body. The main difference to known estimates [Grub], [Schn₁], [Schn₂] is that we do not assume that ∂C is C^2 .

0. Notation

Hyperplanes are usually denoted by H . The closed halfspaces associated with H are denoted by H^- and H^+ . The polar of a convex body K is given by K^* . The convex hull of sets M_1, \dots, M_m is denoted by

$$[M_1, \dots, M_m].$$

†Supported by NSF grant DMS-8902327.

Received January 30, 1990

1. The convex floating body of a polytope

Let P be a convex polytope with nonempty interior in \mathbf{R}^n . The set of its k -dimensional faces is denoted by $\text{fac}_k(P)$. The extreme points are also denoted by $\text{ext}(P)$. We define

$$\phi_1(P) = 2 \quad \text{if } P \subseteq \mathbf{R}.$$

If $P \subseteq \mathbf{R}^n$, $n \geq 2$, then we choose for every extreme point $x \in \text{ext}(P)$ a hyperplane H_x that separates x from all other extreme points, i.e., $x \in \dot{H}_x^-$ and all other extreme points are in \dot{H}_x^+ . We put

$$(1.1) \quad \phi_n(P) = \sum_{x \in \text{ext}(P)} \phi_{n-1}(P \cap H_x).$$

We define

$$\psi_1(P) = 2 \quad \text{if } P \subseteq \mathbf{R},$$

$$(1.2) \quad \psi_n(P) = \sum_{F \in \text{fac}_{n-1}(P)} \psi_{n-1}(F) \quad \text{if } P \subseteq \mathbf{R}^n, \quad n \geq 2.$$

We have, in particular, that $\phi_2(P) = \psi_2(P) = 2\#\text{ext}(P)$. For an n -dimensional simplex S we get $\phi_n(S) = \psi_n(S) = (n+1)!$.

For the unit balls of l_n^1 and l_n^∞ we get $\psi_n(B_1^n) = \psi_n(B_\infty^n) = 2^n n!$.

LEMMA 1.1. *Let P be a convex polytope with nonempty interior in \mathbf{R}^n . Then we have for all $n \in \mathbf{N}$*

- (i) $\phi_n(P) = \psi_n(P)$,
- (ii) $\psi_n(P)$ equals the cardinality of the set of all sequences $(f_0, f_1, \dots, f_{n-1})$ where $f_i \in \text{fac}_i(P)$, $i = 0, \dots, n-1$, and $f_0 \subset f_1 \subset \dots \subset f_{n-1}$.
- (iii) Suppose that $0 \in \dot{P}$. Then $\psi_n(P) = \psi_n(P^*)$.

PROOF. We clearly have the equality for $n = 1$ and $n = 2$. Suppose now that the assertion is true for all integers between 1 and $n-1$:

$$\phi_n(P) = \sum_{x \in \text{ext}(P)} \phi_{n-1}(P \cap H_x) = \sum_{x \in \text{ext}(P)} \psi_{n-1}(P \cap H_x).$$

We have by definition of ψ_n

$$\psi_{n-1}(P \cap H_x) = \sum_{F \ni x} \psi_{n-2}(F \cap H_x)$$

because all $n-2$ dimensional faces of $P \cap H_x$ are of the form $P \cap H_x \cap F$ where F is an $n-1$ dimensional face of P .

Therefore we get

$$\phi_n(P) = \sum_{x \in \text{ext}(P)} \sum_{F \ni x} \psi_{n-2}(F \cap H_x) = \sum_{F \in \text{fac}_{n-1}(P)} \sum_{x \in F} \psi_{n-2}(F \cap H_x).$$

By our assumption we get

$$\phi_n(P) = \sum_{F \in \text{fac}_{n-1}(P)} \sum_{x \in F} \phi_{n-2}(F \cap H_x).$$

And by the definition of ϕ_n

$$\phi_n(P) = \sum_{F \in \text{fac}_{n-1}(P)} \phi_{n-1}(F).$$

Again by our assumption

$$\phi_n(P) = \sum_{F \in \text{fac}_{n-1}(P)} \psi_{n-1}(F) = \psi_n(F).$$

(iii) is a consequence of (ii) and [G, section 3.4]. ■

THEOREM 1.2. *Let P be a convex polytope with nonempty interior in \mathbb{R}^n . Then we have*

$$\lim_{\delta \rightarrow 0} \frac{\text{vol}_n(P) - \text{vol}_n(P_\delta)}{\delta \left(\ln \frac{1}{\delta} \right)^{n-1}} = \frac{1}{n!} \frac{1}{n^{n-1}} \phi_n(P).$$

LEMMA 1.3. *Let S be a simplex with nonempty interior in \mathbb{R}^n spanned by z_0, z_1, \dots, z_n , and $\delta \leq \frac{1}{2} \text{vol}_n(S)$.*

(i) *Let H_δ denote hyperplanes that cut off a set of volume δ from S and so that $z_0 \in \dot{H}_\delta^-$ but none of the other extreme points. Then we have*

$$\begin{aligned} \frac{1}{n^{n-1}} \delta \left(\ln \frac{\text{vol}_n(S)}{\delta} \right)^{n-1} &\leq \text{vol}_n \left(S \cap \left(\bigcup H_\delta^- \right) \right) \\ &\leq \frac{1}{n^{n-1}} \delta \left(\ln \frac{n^n \text{vol}_n(S)}{\delta} \right)^{n-1} \\ &\quad + n \delta \left(\ln \left(\frac{\text{vol}_n(S) n!}{\delta} \right) \right)^{n-2}. \end{aligned}$$

(ii) *Let H_δ denote hyperplanes that cut off a set of volume δ from S so that at least z_0, z_1 are in \dot{H}_δ^- . Then we have*

$$\text{vol}_n \left(S \cap \left(\bigcup H_\delta^- \right) \right) \leq c_n \delta \left(\ln \frac{\text{vol}_n(S)}{\delta} \right)^{n-2}.$$

(iii) Let H_δ denote hyperplanes that cut off a set of volume δ from S . Then we have

$$\text{vol}_n\left(S \cap \left(\bigcup H_\delta^-\right)\right) \leq \frac{\delta(n+1)}{n^{n-1}} \left(\ln \frac{n^n \text{vol}_n(S)}{\delta}\right)^{n-1} + c_n \delta \left(\ln \frac{\text{vol}_n(S)}{\delta}\right)^{n-2}.$$

PROOF. (i) We may assume that S is spanned by $0, e_1, e_1 + e_2, e_1 + e_3, \dots, e_1 + e_n$. Let $t_1 e_1 \in H_\delta$ and $t_i(e_1 + e_i) \in H_\delta$ for $i = 2, \dots, n$. It follows from the assumptions that $0 \leq t_i \leq 1$, $i = 1, \dots, n$ and

$$(1.3) \quad \delta = \text{vol}_n(S \cap H_\delta^-) = \frac{1}{n!} \prod_{i=1}^n t_i.$$

We show that H_δ touches the surface

$$(1.4) \quad x_1 = \sum_{i=2}^n x_i + \frac{\delta n!}{n^n} \left(\prod_{i=2}^n x_i\right)^{-1}$$

at $x = t_i/n$, $i = 2, \dots, n$,

$$x_1 = \frac{1}{n} \sum_{i=2}^n t_i + \frac{\delta n!}{n} \left(\prod_{i=2}^n t_i\right)^{-1}.$$

Clearly, this point lies on the surface (1.2) and, moreover, this point is also an element of H_δ . It is a convex combination of the points $t_1 e_1$ and $t_i(e_1 + e_i)$, $i = 2, \dots, n$. We show that H_δ is actually a tangent hyperplane of (1.4). It is enough to show that the partial derivatives of (1.4) at that point coincide with the partial derivatives of H_δ :

$$\frac{\partial x_1}{\partial x_i} = 1 - \frac{\delta n!}{n^n} \frac{1}{x_i} \left(\prod_{j=2}^n x_j\right)^{-1} = 1 - \frac{t_1}{t_i}.$$

By (1.3) we get that on the set of all x such that

$$0 \leq x_i \leq \frac{1}{n}, \quad i = 2, \dots, n \quad \text{and} \quad \frac{\delta n!}{n^{n-1}} \leq \prod_{i=2}^n x_i$$

the surface (1.4) gives the boundary of $\bigcup H_\delta^-$. Therefore we get

$$\text{vol}_n\left(S \cap \left(\bigcup H_\delta^-\right)\right) \geq \frac{\delta n!}{n^n} \int_{\delta n!/n}^{1/n} \cdots \int_{\gamma_k}^{1/n} \cdots \int_{\gamma_2}^{1/n} \left(\prod_{i=2}^n x_i\right)^{-1} dx_2 \cdots dx_n$$

where

$$\gamma_k = \frac{\delta n!}{n^{n-k+1}} \left(\prod_{i=k+1}^n x_i\right)^{-1}, \quad k = 2, \dots, n-1.$$

Since we have that

$$\begin{aligned} & \frac{1}{(k-2)!} \int_{\gamma_k}^{1/n} \left(\prod_{i=k}^n x_i \right)^{-1} \left(\ln \left(\frac{n^{n-k+1}}{\delta n!} \prod_{i=k}^n x_i \right) \right)^{k-2} dx_k \\ &= \frac{1}{(k-1)!} \left(\prod_{i=k+1}^n x_i \right)^{-1} \left(\ln \left(\frac{n^{n-k}}{\delta n!} \prod_{i=k+1}^n x_i \right) \right)^{k-1} \end{aligned}$$

we obtain

$$\text{vol}_n(S \cap (\cup H_\delta^-)) \geq \frac{\delta n!}{n^n} \frac{1}{(n-1)!} \left(\ln \frac{1}{\delta n!} \right)^{n-1} = \frac{\delta}{n^{n-1}} \left(\ln \frac{1}{\delta n!} \right)^{n-1}.$$

Now we obtain the estimate from above. We blow up the simplex S by the factor n . We get here as above

$$\delta = \text{vol}_n(nS \cap H_\delta^-) = \frac{1}{n!} \prod_{i=1}^n t_i, \quad 0 \leq t_i \leq n, \quad i = 1, \dots, n$$

and $x_i = t_i/n$ for $0 \leq x_i \leq 1$, $i = 2, \dots, n$, and $\delta n!/n^n \leq \prod_{i=2}^n x_i$.

By using the computation for the lower estimate we get

$$\begin{aligned} & \text{vol}_n \left(S \cap (\cup H_\delta^-) \cap \left\{ x \left| \frac{\delta n!}{n^n} \leq \prod_{i=2}^n x_i \right. \right\} \right) \\ & \leq \text{vol}_n \left(nS \cap (\cup H_\delta^-) \cap \left\{ x \left| \frac{\delta n!}{n^n} \leq \prod_{i=2}^n x_i \right. \right\} \cap \{x \mid 0 \leq x_i \leq 1, i = 2, \dots, n\} \right) \\ & = n^n \text{vol}_n \left(S \cap (\cup H_{\delta/n^n}^-) \cap \left\{ x \left| \frac{\delta}{n^n} \frac{n!}{n^{n-1}} \leq \prod_{i=2}^n x_i \right. \right\} \right. \\ & \quad \left. \cap \left\{ x \left| 0 \leq x_i \leq \frac{1}{n}, i = 2, \dots, n \right. \right\} \right) \\ & = n^n \frac{\delta}{n^n} \frac{1}{n^{n-1}} \left(\ln \frac{n^n}{\delta n!} \right)^{n-1} \\ & = \frac{\delta}{n^{n-1}} \left(\ln \frac{n^n}{\delta n!} \right)^{n-1}. \end{aligned}$$

Now it is left to estimate the volume of the part where $\prod_{i=2}^n x_i \leq \delta n!/n^n$ and $0 \leq x_i \leq 1$, $i = 2, \dots, n$. We split this set again up into one set where at least one of the x_i , $i = 2, \dots, n$ are less than δ and therefore that volume is less than $(n-1)\delta$, and a second set where all x_i are larger than δ . Clearly the volume of the latter set is less than

$$\begin{aligned} \int_{\delta}^1 \cdots \int_{\delta}^1 \int_0^{(\delta n! / n^n) (\prod_i^n x_i)^{-1}} dx_2 \cdots dx_n &= \int_{\delta}^1 \cdots \int_{\delta}^1 \frac{\delta n!}{n^n} \left(\prod_i^n x_i \right)^{-1} dx_3 \cdots dx_n \\ &= \frac{\delta n!}{n^n} \left(\ln \left(\frac{1}{\delta} \right) \right)^{n-2}. \end{aligned}$$

We are proving (ii) and (iii) together. We use an inductive argument. The statement (ii) is easily checked in \mathbf{R}^2 . Together with (i) this also proves (iii) in the case of \mathbf{R}^2 . Assume now that we have verified (ii) and (iii) for the dimension $n-1$. We may assume that the simplex has equal sides and that $z_0 = -e_1$ and $z_1 = e_1$. Therefore the points z_2, \dots, z_n are contained in the subspace E orthogonal to e_1 and $E \cap S$ is the simplex spanned by $0, z_2, \dots, z_n$. Consider now the convex floating body $(E \cap S)_\epsilon$ of $E \cap S$ with respect to the subspace E . We put

$$(E \cap S)_\epsilon \times [-e_1, e_1]$$

and observe that any hyperplane H so that \dot{H}^- contains z_0, z_1 and so that H touches $(E \cap S)_\epsilon \times [-e_1, e_1]$ cuts off a set of volume larger than $4^{-n}\epsilon$ provided that $2\epsilon \leq \text{vol}_{n-1}(E \cap S)$.

Now we conclude that

$$((E \cap S) \setminus (E \cap S)_\epsilon) \times [-e_1, e_1] \supseteq S \cap \left(\bigcup H_\delta^- \right)$$

where $\delta = 4^{-n}\epsilon$ and \dot{H}_δ^- contains at least z_0 and z_1 . Now we apply the induction hypothesis and obtain (ii) for the dimension n . (i) and (ii) for the dimension n give (iii) for the dimension n . ■

LEMMA 1.4 *Let S be the simplex in \mathbf{R}^n spanned by z_1, \dots, z_{n+1} . Assume that S has a nonempty interior and let H_1 and H_2 be hyperplanes so that*

$$z_1, \dots, z_{n-1} \in H_1, H_2, \quad z_n \in \dot{H}_1^-, \quad z_{n+1} \in \dot{H}_2^-.$$

Let H_δ be hyperplanes so that $z_1 \in H_\delta^-$ and $z_2, \dots, z_{n+1} \in H_\delta^+$ so that $\text{vol}_n(S \cap H_\delta^-) = \delta$. Then there is a constant C so that we have for $\delta \leq \frac{1}{2}\text{vol}_n(S)$

$$\text{vol}_n(S \cap (H_\delta^- \cap H_1^+ \cap H_2^+)) \leq C \frac{n!}{n^{n-1}} \delta \left(\ln \frac{n^{n-1} \text{vol}_n(S)}{\delta} \right)^{n-2}$$

where C only depends on H_1 and H_2 and the volume of S .

PROOF. We proceed here as in the proof of Lemma 1.3. We may assume that $z_1 = 0, z_2 = e_1, z_3 = e_1 + e_2, \dots, z_{n+1} = e_1 + e_n$. For properly chosen a_1 and a_2 we

have $H_1 = \{t \in \mathbb{R}^n \mid t_{n-1} = a_1 t_n\}$ and $H_2 = \{t \in \mathbb{R}^n \mid t_{n-1} = a_2 t_n\}$. Therefore we get as limits of integration for the variable t_{n-1} that $a_1 t_n \leq t_{n-1} \leq a_2 t_n$.

By the same reasoning as in the proof of Lemma 1.3 the boundary of $\cup H_\delta^-$ is below

$$x_1 = \sum_{i=2}^n x_i + \frac{\delta n!}{n^n} \left(\prod_{i=2}^n x_i \right)^{-1}$$

on the set under consideration.

The area where at least one of the x_i , $i = 2, \dots, n$ is less than $\delta n! / n^n$ has $n-1$ dimensional volume less than $(n-1)\delta n! / n^n$. Therefore we get

$$\begin{aligned} \text{vol}_n(S \cap (\cup H_\delta^-) \cap H_1^+ \cap H_2^+) \\ \leq \frac{\delta n!}{n^n} \int_{\delta n! / n^n}^1 \int_{a_1 x_n}^{a_2 x_n} \int_{\delta n! / n^n}^1 \cdots \int_{\delta n! / n^n}^1 \left(\prod_{i=2}^n x_i \right)^{-1} dx_2 \cdots dx_n + \frac{\delta n!}{n^{n-1}} \\ = \frac{\delta n!}{n^n} \left(\ln \frac{a_2}{a_1} \right) \left(\ln \frac{n^n}{\delta n!} \right)^{n-2} + \frac{\delta n!}{n^{n-1}} \leq C \frac{n!}{n^{n-1}} \delta \left(\ln \frac{n^n}{\delta n!} \right)^{n-2}. \end{aligned} \quad \blacksquare$$

LEMMA 1.5. *Let S be the simplex in \mathbb{R}^n spanned by x_1, \dots, x_{n+1} . Assume that S has a nonempty interior and let H_1, \dots, H_n be hyperplanes such that*

$$(1.5) \quad x_1, \dots, x_{k-1} \in H_k; \quad x_k \in \dot{H}_k^+; \quad x_{k+1}, \dots, x_{n+1} \in \dot{H}_k^-, \quad k = 1, 2, \dots, n.$$

(i) *Let H_δ be hyperplanes so that $x_1 \in H_\delta^-$ and $x_2, \dots, x_{n+1} \in H_\delta^+$ so that $\text{vol}_n(S \cap H_\delta^-) = \delta$. Then we have for sufficiently small $\delta > 0$*

$$\begin{aligned} \frac{1}{n!} \frac{1}{n^{n-1}} \delta \left(\ln \frac{n^n \text{vol}_n(S)}{\delta} \right)^{n-1} - C \delta \left(\ln \frac{\text{vol}_n(S)}{\delta} \right)^{n-2} \\ \leq \text{vol}_n \left(S \cap (\cup H_\delta^-) \cap \left(\bigcap_{i=2}^n H_i^+ \right) \right). \end{aligned}$$

(ii) *Let H_δ be hyperplanes so that $\text{vol}_n(S \cap H_\delta^-) = \delta$; then we have*

$$\begin{aligned} \text{vol}_n \left(S \cap (\cup H_\delta^-) \cap \left(\bigcap_{i=1}^n H_i^+ \right) \right) \\ \leq \frac{1}{n!} \frac{1}{n^{n-1}} \delta \left(\ln \frac{n^n \text{vol}_n(S)}{\delta} \right)^{n-1} + C \delta \left(\ln \frac{\text{vol}_n(S)}{\delta} \right)^{n-2} \end{aligned}$$

where C depends on the hyperplanes H_i , $i = 1, \dots, n$ and S .

PROOF. We may assume that $\|x_i - x_j\|_2 = 1$ if $i \neq j$ and $i, j = 1, \dots, n + 1$. There are $\binom{n}{2}$ hyperplanes H_{x_i, x_j} , $i \neq j$, $i, j = 2, \dots, n + 1$, so that $x_k \in H_{x_i, x_j}$ if $k \neq i, j$ and $\frac{1}{2}(x_i + x_j) \in H_{x_i, x_j}$. By this S is split up into $n!$ isometric pieces S_i , $i = 1, \dots, n!$. Each of these pieces contains x_1 . Therefore we get by Lemma 1.3(i)

$$\text{vol}_n(S_i \cap (\cup H_\delta^-)) \geq \frac{1}{n!} \frac{1}{n^{n-1}} \delta \left(\ln \frac{\text{vol}_n(S)}{\delta} \right)^{n-1}.$$

Now we are choosing hyperplanes K_{x_i, x_j} , $i \neq j$, $i, j = 2, \dots, n + 1$ such that $x_k \in K_{x_i, x_j}$ if $k \neq i, j$ and

$$S \cap \left(\bigcap_{i, j=2}^{n+1} K_{x_i, x_j}^- \right) \subseteq S \cap \left(\bigcap_{i=2}^n H_i^+ \right).$$

It is easily seen that this is possible. Moreover, we may assume that $S \cap (\bigcap_{i, j=2}^{n+1} K_{x_i, x_j}^-) \subseteq S_1$ and that $S_1 = S \cap (\bigcap_{i, j=2}^{n+1} H_{x_i, x_j}^+)$. Now we subtract the sets $H_{x_i, x_j}^+ \cap K_{x_i, x_j}^+$. By Lemma 1.4 we have

$$\begin{aligned} \text{vol}_n \left(S \cap \left(\bigcap_{i=2}^n H_i^+ \right) \cap (\cup H_\delta^-) \right) &\geq \text{vol}_n \left(S_1 \cap \left(\bigcap_{i, j=2}^{n+1} K_{x_i, x_j}^- \right) \cap (\cup H_\delta^-) \right) \\ &\geq \text{vol}_n(S_1 \cap (\cup H_\delta^-)) \\ &\quad - \sum_{i, j=2}^{n+1} \text{vol}_n(S \cap K_{x_i, x_j}^+ \cap H_{x_i, x_j}^+ \cap (\cup H_\delta^-)) \\ &\geq \frac{1}{n!} \frac{1}{n^{n-1}} \delta \left(\ln \frac{\text{vol}_n(S)}{\delta} \right)^{n-1} \\ &\quad - C \delta \left(\ln \left(\frac{\text{vol}_n(S)}{\delta} \right) \right)^{n-2}. \end{aligned}$$

(ii) is shown in the same way as (i). We have to use Lemmas 1.3 and 1.4. ■

LEMMA 1.6. *Let P be a convex polytope with nonempty interior in \mathbf{R}^n . There is a family of simplices S_i , T_i , $i = 1, \dots, \phi_n(P)$ and hyperplanes H_x , $x \in \text{ext}(P)$, such that*

- (i) $P \cap H_x^- \cap H_z^- = \emptyset$ if $x \neq z$.
- (ii) $\dot{S}_i \cap \dot{S}_j = \emptyset$ if $i \neq j$.
- (iii) For every i there is $x \in \text{ext}(P)$ so that $S_i \subseteq P \cap H_x^-$ and $P \subseteq T_i$.

(iv) For every T_i , $i = 1, \dots, \phi_n(P)$ there are hyperplanes H_j^i , $j = 1, \dots, n$ satisfying (1.5) of Lemma 1.5 such that

$$T_i \cap \left(\bigcap_{j=1}^n H_j^{i+} \right) = S_i.$$

PROOF. We construct the simplices by induction. For $n = 1$, P is an interval and the statement obvious. For $n \geq 2$ we choose for every extreme point a hyperplane H_x so that $x \in \dot{H}_x^-$ and

$$P \cap H_x^- \cap H_z^- = \emptyset$$

for $x \neq z$.

$P \cap H_x$ has simplices \tilde{S}_i , \tilde{T}_i , $i = 1, \dots, \phi_{n-1}(P \cap H_x)$ satisfying (i), (ii), (iii), and (iv) for $P \cap H_x$. Moreover, we have for $P \cap H_x$ hyperplanes \tilde{H}_j^i , $j = 1, \dots, n-1$ satisfying (iv). We define

$$S_i = [x, \tilde{S}_i]$$

and H_{j+1}^i is the hyperplane spanned by x and \tilde{H}_j^i . For H_x^i we choose H_x . Now we construct T_i . The extreme point x and \tilde{T}_i generate a cone that contains P . To get T_i we intersect this cone with a halfspace that contains P and whose defining hyperplane is parallel to H_x . In this way we obtain for every x a sequence of simplices. By the definition of $\phi_n(P)$ it follows that we get in fact $\phi_n(P)$ simplices. ■

LEMMA 1.7. Let P be a convex polytope with nonempty interior in \mathbb{R}^n . Then there are simplices S_i , T_i , $i = 1, \dots, \psi_n(P)$ and hyperplanes H_j^i , $j = 1, \dots, n+1$ so that

- (i) $\dot{S}_i \cap \dot{S}_j = \emptyset$ for $i \neq j$,
- (ii) $\bigcup_{i=1}^{\psi_n(P)} S_i = P$,
- (iii) $S_i \subseteq T_i \subseteq P$, $i = 1, \dots, \psi_n(P)$,
- (iv) $\bigcap_{j=1}^{n+1} H_j^{i+} = S_i$, $i = 1, \dots, \psi_n(P)$,
- (v) H_j^i , $j = 1, \dots, n$ satisfy the hypothesis (1.5) of Lemma 1.5 with respect to T_i .

PROOF. We proceed by induction over the dimension n . For $n = 1$, P is an interval and the choices are obvious. For $n \geq 2$ we choose an interior point $x \in P$. Each $n-1$ dimensional face F of P has simplices \tilde{S}_i , \tilde{T}_i , $i = 1, \dots, \psi_{n-1}(F)$ and hyperplanes \tilde{H}_j^i , $j = 1, \dots, n-1$ satisfying (i)–(v). Again, we define

$$S_i = [x, \tilde{S}_i].$$

The hyperplanes H_j^i are spanned by x and \tilde{H}_j^i , $j = 1, \dots, n$. As H_{n+1}^i we choose the hyperplane containing F . Now we choose an interior point \tilde{x} of P so that x is an interior point of

$$T_i = [\tilde{x}, \tilde{T}_i]$$

and so that the center of gravity of S_i is on the line through x and \tilde{x} . ■

PROOF OF THEOREM 1.2. Let S_i , $i = 1, \dots, \phi_n(P)$ be as given in Lemma 1.6 and H_δ hyperplanes so that $\text{vol}_n(P \cap H_\delta^-) = \delta$. Let K_δ^i be hyperplanes so that $\text{vol}_n(T_i \cap K_\delta^{i-}) = \delta$ and K_δ^{i-} contains the only extreme point of T_i that is also an extreme point of P . Since $P \subseteq T_i$ we have for all $i = 1, \dots, \phi_n(P)$

$$\bigcup H_\delta^- \supseteq \bigcup K_\delta^{i-}.$$

This implies

$$\text{vol}_n(P \cap (\bigcup H_\delta^-)) \geq \sum_{i=1}^{\phi_n(P)} \text{vol}_n\left(S_i \cap \left(\bigcup K_\delta^{i-}\right)\right).$$

Now we apply Lemma 1.5(i) and get

$$\begin{aligned} \text{vol}_n\left(P \cap \left(\bigcup H_\delta^-\right)\right) &\geq \frac{1}{n!} \frac{1}{n^{n-1}} \phi_n(P) \delta \left(\ln \frac{n^n \text{vol}_n(S)}{\delta}\right)^{n-1} \\ &\quad - C \phi_n(P) \delta \left(\ln \frac{\text{vol}_n(S)}{\delta}\right)^{n-2}. \end{aligned}$$

The opposite inequality is obtained in the same way by using Lemmas 1.5(ii) and 1.7. ■

LEMMA 1.8. *Let P be a convex polytope in \mathbb{R}^n with nonempty interior. Let H_δ denote hyperplanes so that $\text{vol}_n(P \cap H_\delta^-) = \delta$. Then we have for all δ , $0 < \delta < \delta_n$,*

$$\text{vol}_n(P \setminus P_\delta) \leq \frac{\phi_n(P)}{n! n^{n-1}} \delta \left(\ln \frac{\text{vol}_n(P)}{\delta}\right)^{n-1} + c_n \phi_n(P) \delta \left(\ln \frac{\text{vol}_n(P)}{\delta}\right)^{n-2},$$

where c_n and δ_n depend only on the dimension n .

LEMMA 1.9 [J]. *Let K be a convex body in \mathbb{R}^n . Then there is an ellipsoid $\mathcal{E}(z, r)$ with center z and radius $r = (r_1, \dots, r_n)$,*

$$(1.6) \quad \mathcal{E}(z, r) \subseteq K \subseteq \mathcal{E}(z, n \cdot r).$$

PROOF OF LEMMA 1.8. We use a refinement of the construction of Lemma 1.7. The refinement consists of the specification how x and \tilde{x} in the proof of Lemma 1.7 are chosen.

By Lemma 1.9 for any convex body in \mathbf{R}^n there is an ellipsoid $\mathcal{E}(z, r)$ satisfying (1.6). As x we choose the center z of the ellipsoid $\mathcal{E}(z, r)$. Next we choose

$$(1.7) \quad y \text{ as the center of gravity of } \tilde{S}_i.$$

The line through y and x has two intersections with ∂K , namely y and another point y' . As \tilde{x} we choose y' . Because of (1.6) we have

$$(1.8) \quad \|x - y\|_2 \leq n \|x - \tilde{x}\|_2.$$

By an affine transform we map S_i onto $[0, e_1, e_2, \dots, e_n]$. Because of (1.7) and (1.8) we get that the image of T_i under the same affine transform contains the simplex spanned by

$$0 \quad \text{and} \quad -\frac{\sqrt{k-1}}{k^2} (e_1 + \dots + e_{k-1}) + \frac{k+1}{k} e_k, \quad k = 1, \dots, n.$$

Therefore, if we apply Lemma 1.5 now to this construction, the constants will only depend on the dimension n . ■

2. Estimates from below for polyhedral approximation

The symmetric difference $d_s(K_1, K_2)$ between two convex bodies K_1, K_2 is $\text{vol}_n(K_1 \Delta K_2)$.

PROPOSITION 2.1. *Let K be a convex body in \mathbf{R}^n . Then we have for all polytopes P , $P \subseteq K$, and all δ , $0 < \delta < \delta_n$,*

$$\frac{1}{2} \text{vol}_n(K \setminus K_\delta) \leq d_s(K, P)$$

provided that

$$\text{vol}_n(K \setminus K_\delta) \geq 2 \frac{\phi_n(P)}{n! n^{n-1}} \delta \left(\ln \frac{\text{vol}_n(P)}{\delta} \right)^{n-1} + c_n \phi_n(P) \delta \left(\ln \frac{\text{vol}_n(P)}{\delta} \right)^{n-2}$$

where c_n is a constant that depends only on n .

PROOF. Since $P \subseteq K$ we have $P_\delta \subseteq K_\delta$. Therefore we get

$$\text{vol}_n(K \setminus P) \geq \text{vol}_n(K \setminus K_\delta) - \text{vol}_n(P \setminus K_\delta) \geq \text{vol}_n(K \setminus K_\delta) - \text{vol}_n(P \setminus P_\delta).$$

Now we apply Lemma 1.8. ■

COROLLARY 2.2. *Let K be a convex body in \mathbf{R}^n and $P, P \subseteq K$, a polytope with nonempty interior. Then we have for sufficiently large $\phi_n(P)$*

$$d_s(K, P) \geq Dn^5 \phi_n(P)^{-2/(n-1)} \left(\int_{\partial K} \kappa(x)^{1/(n+1)} d\mu(x) \right)^{(n+1)/(n-1)} \times \left(\ln \frac{\phi_n(P) \text{vol}_n(P)^{(n-1)/(n+1)}}{\int_{\partial K} \kappa(x)^{1/(n+1)} d\mu(x)} \right)^{-2},$$

PROOF. By Theorem 1 in [Schü-W] we have

$$(2.1) \quad \lim_{\delta \rightarrow 0} \frac{\text{vol}_n(K \setminus K_\delta)}{\delta^{2/(n+1)}} = \frac{1}{c_n} \int_{\partial K} \kappa(x)^{1/(n+1)} d\mu(x)$$

with

$$c_n = 2 \left(\frac{1}{n+1} \text{vol}_{n-1}(B_2^{n-1}) \right)^{2/(n+1)}.$$

The hypothesis of Proposition 2.1 is fulfilled if

$$(2.2) \quad \delta \leq \frac{1}{2} t \left(\ln \frac{\text{vol}_n(P)}{t} \right)^{-n-1}$$

with

$$t = \left\{ \frac{1}{8} \frac{n! n^{n-1}}{c_n \phi_n(P)} \int_{\partial K} \kappa(x)^{1/(n+1)} d\mu(x) \right\}^{(n+1)/(n-1)}$$

and t is sufficiently small, i.e. $\phi_n(P)$ is sufficiently large. Now we use $d_s(K, P) \geq \frac{1}{2} \text{vol}(K \setminus K_\delta)$, (2.1), and (2.2). \blacksquare

COROLLARY 2.3. *Let K be a convex body in \mathbf{R}^n , and $P, P \subseteq K$, a simplicial polytope. Then we have for sufficiently large $\#\text{fac}_{n-1}(P)$*

$$d_s(K, P) \geq Dn^3 (\#\text{fac}_{n-1}(P))^{-2/(n-1)} \left(\int_{\partial K} \kappa(x)^{1/(n+1)} d\mu(x) \right)^{(n+1)/(n-1)} \times \left(\ln \frac{\#\text{fac}_{n-1}(P) \text{vol}_n(P)^{(n-1)/(n+1)}}{\int_{\partial K} \kappa(x)^{1/(n+1)} d\mu(x)} \right)^{-2}.$$

To prove Corollary 2.3 we use Corollary 2.2 and $\psi_n(P) = n! \#\text{fac}_{n-1}(P)$. \blacksquare

REFERENCES

[B-L] I. Bárány and D. G. Larman, *Convex bodies, economic cap coverings, random polytopes*, *Mathematika* **35** (1988), 274–291.

[G] B. Grünbaum, *Convex Polytopes*, John Wiley & Sons, Interscience, New York, 1967.

[Grub] P. M. Gruber, *Approximation of convex bodies*, in *Convexity and its Applications* (P. M. Gruber and J. M. Wills, eds.), Birkhäuser Verlag, 1983, pp. 131–162.

[J] F. John, *Extremum problems with inequalities as subsidiary conditions*, R. Courant Anniversary Volume, Wiley, Interscience, New York, 1948, pp. 187–204.

[Schn₁] R. Schneider, *Polyhedral approximation of smooth convex bodies*, *J. Math. Anal. Appl.* **128** (1987), 470–474.

[Schn₂] R. Schneider, *Affine invariant approximation by convex polytopes*, *Studia Sci. Math. Hung.* **21** (1986), 401–408.

[Schü-W] C. Schütt and E. Werner, *The convex floating body*, *Math. Scand.*, to appear.