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ABSTRACT
We consider the convex floating body of a polytope and polyhedral approxima-
tion of a convex body.

In [Schii-W] we found for the convex floating body K of a convex body K

. vol, (K) — vol,,(Kj3) n
lim ¢, —"—o e = aKK(X)”‘ du(x)

where «(x) is the generalized Gauss-Kronecker curvature. In particular, for poly-
topes these expressions equal zero. It follows from [B-L] that the order of mag-
nitude of vol, (P) — vol,(P;) for a polytope P is d(In(1/8))""!. We give here a
precise formula. It turns out that we get the same expression for P and its polar
P*. We apply this formula to estimate the symmetric distance between a polytope
and a convex body. The main difference to known estimates [Grub], [Schn,],
[Schn,] is that we do not assume that dC is C2.

0. Notation

Hyperplanes are usually denoted by H. The closed halfspaces associated with H
are denoted by '~ and H™. The polar of a convex body X is given by K*. The
convex hull of sets M,,...,M,, is denoted by

My,...,.Mp].
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1. The convex floating body of a polytope

Let P be a convex polytope with nonempty interior in R”. The set of its
k-dimensional faces is denoted by fac, (P). The extreme points are also denoted
by ext(P). We define

¢ (P) =2 if PS R.

If P R", n =2, then we choose for every extreme point x € ext(P) a hyperplane
H, that separates x from all other extreme points, i.e., x € H - and all other ex-
treme points are in H;}. We put

(1.1) $a(P)= > & 1(PNH,).

x€Eext(P)

We define
Yi(P) =2 if PSR,

(1.2) Y (P) = Y, Yna(F) ifPSR", n=2.
Fefac,—1(P)
We have, in particular, that ¢,(P) = ¢, (P) = 2#ext(P). For an n-dimensional
simplex S we get ¢,(S) = ¢,(S)=(n+ 1)!.
For the unit balls of /} and I we get Y,(B) = y,(BL) = 2"n!.

LemMA 1.1. Let P be a convex polytope with nonempty interior in R". Then
we have for alln € N
i) ¢, (P) = yn(P),
(ii) ¥, (P) equals the cardinality of the set of all sequences (fy,f1,-- -5 a-1)
where f; € fac;(P), i=0,...,n—1,and fo C fy C++-C fo_i.
(iii) Suppose that 0 € P. Then y,(P) = y,(P").

Proor. We clearly have the equality for n = 1 and n = 2. Suppose now that the
assertion is true for all integers between 1 and n — 1:

d’n(P) = Z ¢n-l(Pon)= Z ‘pn—l(Pon)-

xeext(P) xEext(P)

We have by definition of y,

‘I/n—l(Pon) = Z \[/R—Z(Fn Hx)

F3x

because all n — 2 dimensional faces of P N H, are of the form P N H, N F where
Fis an n — 1 dimensional face of P.
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Therefore we get
o(P)= D D¥nalFNHY)= 3] 2 Y2 (FN H,).
x€ext(P) F3x Fefac,_1 (P) x€F
By our assumption we get
$u(PY= 2} 2 éaaFNH,).
Fefac,_ (P) x€F
And by the definition of ¢,
¢n(P) = E ¢n—1(F)'
Fefac, -1 (P)
Again by our assumption

6.(P)= 2 Yn1(F)=yu(F).

Fe&fac,_1(P)
(iii) is a consequence of (ii) and [G, section 3.4]. B
THEOREM 1.2. Let P be a convex polytope with nonempty interior in R”. Then
we have

. vol,(P) — vol,(Ps) 1 1
lim =

50 s{in ! -1 n! n"!
n_
b

LeMMA 1.3. Let S be a simplex with nonempty interior in R”" spanned by z,,
Z1s. .+ sZns and & < 3vol,(S).
(i) Let Hy denote hyperplanes that cut off a set of volume & from S and so
that 7, € H; but none of the other extreme points. Then we have

n—1
n’}_l 5(ln VOI':S(S)) < vol,,(s N (UHg))

n n—1
< :_1 6(ln n vol,,(S))
n o

n—2
+ né(ln(ﬂ(as)—n!)) .

(ii) Let Hj; denote hyperplanes that cut off a set of volume b from S so that at
least 24, 21 are in H; . Then we have

n—2
vol,, <S N (UH{)) < c,,6(ln VOI'('S(S)> .

é.(P).
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(iii) Let Hy denote hyperplanes that cut off a set of volume & from S. Then we
have

n n—1 n-—-2
vol,,(Sﬂ(UH{)) < 5(::,1) (m . Voé”(s)) +c,,6(1n E’la_(sl) ,

Proor. (i) We may assume that S is spanned by 0, ¢, ¢, + e;, e; +
ey,...,e; +e,. Let tie, € Hy and t;(e; + ¢;) € Hy for i = 2,...,n. It follows
from the assumptionsthat 0 < ¢, <1,i=1,...,nand

(1.3) $ = vol, (an‘;)_%Hz,

i=1

We show that Hj touches the surface

1.9 Zx, + @i(ﬁx,>_l

atx=¢/ni=2,...,n,

Zt + £Sn—'<flt,->_l.

Clearly, this point lies on the surface (1.2) and, moreover, this point is also an
element of Hj. It is a convex combination of the points ¢,e, and #;(e; + ¢;),
i=2,...,n. We show that Hj is actually a tangent hyperplane of (1.4). It is
enough to show that the partial derivatives of (1.4) at that point coincide with the
partial derivatives of Hj:

] n -1
0 _y_on! l(nxj) =1—%.

ax; n" x;

By (1.3) we get that on the set of all x such that

1 . on! i
0<sx;<—, i=2,...,n and — =<][x
n i=2

S

the surface (1.4) gives the boundary of U H;. Therefore we get

on! 1/n 1/n 1/n n ~1
vol,,(Sﬂ(UH{)) f ] f (Hx,.) dx,- - - dx,
onl/n Yk ¥2 i=2

where

on! -1
7k=nn k+l<Hxl> > k=2,...,n—1

i=k+1
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Since we have that

1 1/n n -1 nn—-k+l n k-2
-_ 1 (1 ‘
o), (1) (o5 1) s

) bl
= — X; n X;
(k= D! \;Zkh on! k41
we obtain

snt 1 Ly s L\
. m—) =-2 (1],
vol, (SN (UH; ) = = (n—l)!<n6n!) n"—1<n5n!>

Now we obtain the estimate from above. We blow up the simplex S by the factor
n. We get here as above

1 n
6=V01n(nan5_):FHt,‘, O_<.t,'$n, i=1,...,n

» =1

andx; =t;/nfor0<x;<1,i=2,...,n and 6n!/n" < [1L, x;.
By using the computation for the lower estimate we get

on! “
— <IIx
n i=2

n! d

vol,,(S N(UH;) N {x

[~

< vol, (nS N(UH;)N {x

n
n i=2

= n"vol,,(Sﬁ (UH,») N {x .

—n"i 1 In nn n—1
7 opn ! én!

6 nn n—1
n"-1 (ln 6n!) '
Now it is left to estimate the volume of the part where [1"., x; < én!/n" and 0 <
x;<1,i=2,...,n. We split this set again up into one set where at least one of the
X;, i=2,...,n are less than é and therefore that volume is less than (z# — 1)$, and
a second set where all x; are larger than 6. Clearly the volume of the latter set is
less than
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1 1 pent/ny(IlEx)~! 1 1
[ vt [ [
& 5 Yo ) 5
6n!( (1))”—2
= ln - .

n" &

We are proving (ii) and (iii) together. We use an inductive argument. The statement
(i) is easily checked in R?. Together with (i) this also proves (iii) in the case of R2.
Assume now that we have verified (ii) and (iii) for the dimension n — 1. We may
assume that the simplex has equal sides and that z, = —e,; and z, = e,. Therefore
the points z,,. . .,2, are contained in the subspace F orthogonal to e; and EN S
is the simplex spanned by 0, z,...,z,. Consider now the convex floating body
(E N S), of EN S with respect to the subspace E. We put

on!
nn

n -1
(Hx,-) dX3' . 'dx,,
3

(En S)e X [—elvell

and observe that any hyperplane H so that H ™ contains Zo, 21 and so that H
touches (E N S), X [—e;,e;] cuts off a set of volume larger than 4 ~"¢ provided
that 2e¢ < vol,,_; (E N S).

Now we conclude that

(ENSINENS),) X [—e,e] 28N (UH{)

where 8 = 4"¢ and H; contains at least z, and z;. Now we apply the induction
hypothesis and obtain (ii) for the dimension #. (i) and (ii) for the dimension n give
(iii) for the dimension 7. [ |

LEmMMA 1.4 Let S be the simplex in R” spanned by z,,. . .,2,4,. ASsume that
S has a nonempty interior and let H, and H, be hyperplanes so that

VA TIIRIY A7 GHI)HZy Zn EHI_, Zn+1 EHZ—

Let Hjs be hyperplanes so that 7, € Hy and z,,...,2,41 € Hs" so that
vol, (S 0\ Hy) = 8. Then there is a constant C so that we have for § < ivol,(S)

! n=1lyol (S) V"2
vol,(S N (UH;) N Hf N HY) < C 2= 5(1,1 vl )>
n
where C only depends on H, and H, and the volume of S.

Proor. We proceed here as in the proof of Lemma 1.3, We may assume that
721=0,z,=e,z3=¢€e,+e,,..., 2,41 =e, + e,. For properly chosen a, and a, we
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have H, = [t €R" | tu-1 = a1t} and H, = {t € R"| t,_, = ayt,}. Therefore we get
as limits of integration for the variable ¢,_, that a,t, < t,_ < a, ¢,.

By the same reasoning as in the proof of Lemma 1.3 the boundary of UHj is
below

n én! n -1
X; = ZX,“*‘ —"(Hx,)
i=2 n- \i=2

on the set under consideration.
The area where at least one of the x;, i =2,...,nis less than én!/n" has n — 1
dimensional volume less than (n — 1)én!/n". Therefore we get

vol, (SN (UH;) N H N HY)

6n' a2%n "o\ én!
IIx) dxyeedey+ —=
snt/n" Yayx, Jant/n" snl/n™ \i=2 h

én! I n" "2 én! nt 0 n" \"2
= — + =< n —- . B
n" al on! n"-t -1 ( 6n!)
LeEmMA 1.5. Let S be the simplex in R" spanned by x,, . ..,X,,,. Assume that
S has a nonempty interior and let H,, . . . ,H,, be hyperplanes such that
(1.5) xi,.... % EHy, xe €EHE Xputy-. X €EHE, k=12,....n

() Let H; be hyperplanes so that x, € H;y and x,...,x,., € Hj so that
vol,(S N H;) = 6. Then we have for sufficiently small 6 > 0

n n—1 n—2
1o 6(ln n vol,,(S)) —C(S(ln VO],;(S))

n! nn! 8

< vol,,(S N(UH;)N (ﬂH,*)).
(ii) Let H; be hyperplanes so that vol,,{(S N H; ) = §; then we have

vol, (s N (UH) N (n H,-+>)
i=1

n n—1 n—2
<L a(m z VO;"(S)) + cs(ln —VOI’(;(S))

nl nt!

where C depends on the hyperplanes H;, i = 1,...,n and S.
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Proor. We may assume that |x; — x;|, = 1ifi#jandi,j=1,...,n+ L
There are (;’) hyperplanes H,, ., i # Jj, i,j =2,...,n+ 1, so that x, € H,, ,, if
k#i,jand 3(x; + x;) € H, ;- By this § is split up into n! isometric pieces S,
i=1,...,n!. Each of these pieces contains x;. Therefore we get by Lemma 1.3(i)

n—1
vol,(S; N (UH) = ~ L 5(1n VOI"(S)) .
n! n" &

Now we are choosing hyperplanes Kx,-,x,-, i#+J,i,j=2,...,n+ 1 such that x, €
Ky, if k#i,jand

n+1 n

SN < N K;,xj) csSnN (ﬂHﬁ).
i,j=2 i=2

It is easily seen that this in possible. Moreover, we may assume that S N

N, K5 x) € Sy and that §; = SN (N7, HY ). Now we subtract the sets

H{  NK; . By Lemma 1.4 we have

n+1

VOln(Sn (ﬁH,+) n (UH{)) = VOln(Sl ﬂ( n Kx_i,xj) ] (UH,;))

i=2 Lj=2
= vol, (S, N (UH;))

n+l1

~ 2 vol, (SN K} N HE . N (UH;))

ij=2

n—1
L 1 6<1n vol,:s(S))

n—2
- C&(ln(YPI"T(S—Z» .

(ii) is shown in the same way as (i). We have to use Lemmas 1.3 and 1.4. |

LEMMA 1.6. Let P be a convex polytope with nonempty interior in R". There
is a family of simplices S;, T;, i = 1,...,¢,(P) and hyperplanes H,, x € ext(P),
such that

) PNH, NH;, =0 ifx#z

i) SNS=Tifi+j.

(iii) For every i there is x € ext(P) so that S; S PNH; and P& T,.
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(iv) Forevery T;,i=1,...,¢,(P) there are hyperplanes H}, J=1,...,nsatis-
Sfying (1.5) of Lemma 1.5 such that

Jj=1

TN (nH;+) =S,

Proor. We construct the simplices by induction. For n = 1, P is an interval and
the statement obvious. For n = 2 we choose for every extreme point a hyperplane
H, so that x € H; and

PNH NH; =0
for x # z.
PN H, has simplices §;, T;, i =1,...,¢,_, (PN H,) satisfying (), (ii), (iii), and
(iv) for PN H,.. Moreover, we have for PN H, hyperplanes A Lji=1,...,n—1
satisfying (iv). We define

Si=1[x8]

and H/,, is the hyperplane spanned by x and H/. For H{ we choose H,. Now we
construct 7;. The extreme point x and 7; generate a cone that contains 2. To get
T; we intersect this cone with a halfspace that contains P and whose defining
hyperplane is parallel to H,. In this way we obtain for every x a sequence of sim-
plices. By the definition of ¢,(P) it follows that we get in fact ¢,(P) simplices.

|

LeEMMA 1.7. Let P be a convex polytope with nonempty interior in R". Then
there are simplices S;, T;, i = 1,. .. ,¢,(P) and hyperplanes H}, ji=1...,n+1
so that

W S$;NS; = fori#j,

() U? S =P,

(i) S; €T, €Pi=1,...,¥,(P),

(v) VL H=S,i=1,...,¥,(P),

v) H}, J = 1,...,n satisfy the hypothesis (1.5) of Lemma 1.5 with respect

toT,.

Proor. We proceed by induction over the dimension #. For n = 1, Pis an in-
terval and the choices are obvious. For n = 2 we choose an interior point x € P.
Each n — 1 dimensional face F of P has simplices S;, T;, i =1,...,¥,_;(F) and
hyperplanes H, j = 1,...,n — 1 satisfying (i)-(v). Again, we define

Si = [xs gx] .



74 C. SCHUTT Ist. J. Math.

The hyperplanes H/ are spanned by x and A}, j = 1,...,n. As H},, we choose
the hyperplane containing F. Now we choose an interior point X of P so that x is
an interior point of

T,=[%T]
and so that the center of gravity of S; is on the line through x and X. [ ]

PrOOF OF THEOREM 1.2. Let S, i=1,...,0,(P) be as given in Lemma 1.6
and H; hyperplanes so that vol,(P N Hy) = é. Let K} be hyperplanes so that
vol,(T; N Ki{~) = § and K{~ contains the only extreme point of 7; that is also an
extreme point of P. Since P < T; we have foralli=1,...,¢,(P)

UH; 2 UK~

This implies

én(P)
vol,(PN (UH;) = 3 vol,,(S,—ﬂ (wg-)).

i=1

Now we apply Lemma 1.5(i) and get

B 1 1 n"vol,(S) \*!
vol,,(Pﬂ (UHa )) = PP ¢n(P)6<ln _6_>

n—2
- C¢>,,(P)a<1n %@> .

The opposite inequality is obtained in the same way by using Lemmas 1.5(ii)
and 1.7. [

LeMMA 1.8. Let P be a convex polytope in R" with nonempty interior. Let Hy
denote hyperplanes so that vol,(P N Hy ) = 8. Then we have for all 6, 0 < 6 <9,

vol,(P\P;) <

én(P) 6<ln vol,(P)

- vol, (P) '~
nln"! ) ) +C"¢"(P)6<ln——6—> ’

where c, and é,, depend only on the dimension n.

LemMa 1.9 [J]. Let K be a convex body in R". Then there is an ellipsoid
&(z,r) with center z and radius r = (ry,...,r,),

(1.6) &E(z,r) S K< &(z,n-r).
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Proor oF LEMMA 1.8. We use a refinement of the construction of Lemma 1.7.
The refinement consists of the specification how x and ¥ in the proof of Lemma
1.7 are chosen.

By Lemma 1.9 for any convex body in R” there is an ellipsoid &(z, r) satisfying
(1.6). As x we choose the center z of the ellipsoid &(z,r). Next we choose

1.7 y as the center of gravity of S;.

The line through y and x has two intersections with dK, namely y and another
point y”. As X¥ we choose y’. Because of (1.6) we have

(1.8) [x =yl <n|x—X|,.

By an affine transform we map S, onto [0, e|, e,,...,e,]. Because of (1.7) and
(1.8) we get that the image of 7; under the same affine transform contains the
simplex spanned by

vk —1 k+1

0 and - e (e, +---+e_y)+ X

[ k=1,...,n.

Therefore, if we apply Lemma 1.5 now to this construction, the constants will only
depend on the dimension n. [ ]

2. Estimates from below for polyhedral approximation

The symmetric difference d (K, K,) between two convex bodies K;, K, is
vol, (K, AK)).

ProrosiTiON 2.1. Let K be a convex body in R*. Then we have for all poly-
topes b PC K, and all 6,0< 6 < 6,

1
3 vol,,(K\Kj;) < d,(K, P)
provided that

vol,(K\K;) = 2

¢ (P) o (ln vol, (P)

n—1 VOl,,(P) n-2
nin" ! b ) +c,,¢,,(P)5(ln —5—_)

where c, is a constant that depends only on n.
Proor. Since P € K we have P; C K;. Therefore we get

vol,(K\P) = vol,(K\Kj;) — vol,(P\K;) = vol,(K\K;) — vol,(P\Ps).

Now we apply Lemma 1.8. |
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COROLLARY 2.2. Let K be a convex body in R" and P, P € K, a polytope with
nonempty interior. Then we have for sufficiently large ¢,(P)

d,(K,P) = Dn5¢,,(P)-2/<"—“( f KOV D du(x)
]

>(n+l)/(n—l)
K

n¢n(P)V01n(P)(”‘1)/(n+1) -2

f K(X)l/(”+l)dp.(X)
K

I

’

Proofr. By Theorem 1 in [Schii-W] we have

. vol,(K\Kj) 1
2.1 im ——— % = —
520 62/(n+1) Cr

f K(X)l/(n+l)dM(X)
aK

with

1 2/(n+1)
Cy = Z(n 1 vol,,_l(Bz"“)) .

The hypothesis of Proposition 2.1 is fulfilled if

1 vol, (P)\™!
. < = t{ln ——
2.2) 6 3 (n p )
with
1 n!nn—l (n+1}/(n—-1)
-] - K(x)l/(n+l)d (X)}
{8 ca9a(P) Jox *

and ¢ is sufficiently small, i.e. ¢, (P) is sufficiently large. Now we use d,(K,P) =
Ivol(K\Kj), (2.1), and (2.2). ]

CoROLLARY 2.3. Let K be a convex body in R", and P,P < K, a simplicial
polytope. Then we have for sufficiently large #fac,_, (P)

ds(K,P) = Dn3(#facn~1(P))‘2/("‘”(f k(x) " D dp(x)
a

)(n+l)/(n—-l)
K

n #fac,_, (P)vol,(P)(n~1/(n+1) -2

f K(X)l/("+l)du(X)
K

1

To prove Corollary 2.3 we use Corollary 2.2 and ¢, (P) = n!#fac,_(P). n
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