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THE CONVEX FLOATING BODY 
AND POLYHEDRAL APPROXIMATION 

BY 

CARSTEN SCHOTTI" 
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ABSTRACT 
We consider the convex floating body of  a polytope and polyhedral approxima- 
tion o f  a convex body. 

In [Schfi-W] we found for the convex floating body Ks of a convex body K 

vol . (K)  - vol.(K~) ( 
lim Cn = K(X)l/(n+l)d#(x) 
S~O ~2/ (n+l )  ,]0K 

where r (x) is the generalized Gauss-Kronecker curvature. In particular, for poly- 

topes these expressions equal zero. It follows from [B-L] that the order of mag- 

nitude of vol . (P)  - vol.(Ps) for a polytope P is ~(ln(1//q) "-].  We give here a 

precise formula. It turns out that we get the same expression for P and its polar 

P*. We apply this formula to estimate the symmetric distance between a polytope 

and a convex body. The main difference to known estimates [Grub], [Schnl], 

[Schn2] is that we do not assume that OC is C 2. 

O. Notat ion 

Hyperplanes are usually denoted by H. The closed halfspaces associated with H 

are denoted by H -  and H +. The polar of a convex body K is given by K*. The 

convex hull of sets M 1 . . . . .  Mm is denoted by 

[Ml . . . .  ,Mm]. 
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1. The convex floating body of a polytope 

Let P be a convex polytope with nonempty  interior in R ". The set o f  its 

k-dimensional faces is denoted by fack(P) .  The extreme points are also denoted 

by ext (P) .  We define 

4~ (P)  = 2 if P c_ R. 

I f  P _ R n, n _> 2, then we choose for every extreme point x E ext(P) a hyperplane 

Hx that  separates x f rom all other extreme points, i.e., x E/:/~- and all other ex- 

treme points are in/:/x +. We put 

(1.1) q~, (P)  = 

We define 

~_a c~,,_I(PAHx). 
xEext(P) 

¢1 (P)  = 2 if P c_ R, 

(1.2) ~bn(P) = ~] ~b._~ (F) if Pc_ R", n_>2.  
FE facn-I (P) 

We have, in particular, that ~ 2 ( P )  = ~ / 2 ( P )  = 2#ext (P) .  For an n-dimensional 

simplex S we get q~.(S) = ~b.(S) = (n + 1)!.  

For  the unit balls o f  l~ and l~ ° we get ~ . (B~)  = ~bn(B~) = 2"n! .  

LEMMA 1.1. Let P be a convex polytope with nonempty interior in R n. Then 

we have for all n E N 

(i) 4~n(P) = ~bn(P), 
(ii) ~bn(P) equals the cardinality o f  the set of  all sequences (fo,f  . . . . .  f . - 1 )  

where f,. E fac / (P) ,  i = 0 . . . . .  n - 1, and fo c f l  C . . .  C f,_~. 
(iii) Suppose that 0 E P. Then ~bn(P) = ~bn(P*). 

PROOF. We clearly have the equality for n = 1 and n = 2. Suppose now that the 

assertion is true for all integers between 1 and n - 1: 

~ n ( P ) =  ~ Ckn- , (PnHx)= ~ ~n_ l (PnHx) .  
xEext(P) xEext(P) 

We have by definition of  ~bn 

7~._, (P n Hx) = ~ ~b._2(F n Hx) 
FT~x 

because all n - 2 dimensional faces of  P N Hx are of  the form P n Hx n F where 

F is an n - 1 dimensional face of  P. 
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Therefore we get 

¢.(P) = Z ~ ~._2(Fnnx)= 
xEext (P) F ~ x  

By our assumption we get 

¢ . (P)  = 

And by the definition of ¢. 

¢ . ( P )  = 

Again by our assumption 

¢ . ( P )  = 

E E ~._~(Fn U~). 
FEfacn-I (P) x E F  

~ ¢,,_2(F n HD. 
FEfacn-I (P) x E F  

¢.-1(F).  
FE facn-i (P) 

ff] ~n_l(F) = ~ . (F) .  
F(5 facn-i (P) 

(iii) is a consequence of (ii) and [G, section 3.4]. 

TrlEORXM 1.2. 
we have 

Let P be a convex polytope with nonempty interior in R n. Then 

voln(P) - voln (P~) 1 1 
lim~o ~( ~)~-lln n! n ~ - l ¢ ~ ( P ) "  

LEMMA 1.3. Let S be a simplex with nonempty interior in R n spanned by Zo, 
zl . . . . .  z , ,  and ~ < ~vol,(S). 

(i) Let H~ denote hyperplanes that cut o f f  a set o f  volume ~ f rom S and so 

that Zo E lid- but none o f  the other extreme points. Then we have 

1 ( v o l . ( S ) )  n-1 ( ( U ) )  
< vol,, s c i  H~- nn_l 6 In 5 

1 ( n n v o l ~ ( S ) )  ~-' 
< n n _ l  fi In 6 

(ii) Let I-I~ denote hyperplanes that cut o f f  a set o f  volume ~ f rom S so that at 

least zo, zl are in I:-I~. Then we have 
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(iii) Let  H~ denote  hyperplanes that cut  o f f  a set o f  volume 6 f r o m  S. Then we 

have 

vol~ SN U H ~  - _< n~_l In ~ +c~/5 In 

PROOF. (i) We may assume that S is spanned by 0, el,  el + e2, el + 

e3 . . . . .  el + en. Let t lel  E H~ and ti(el + ei) E H6 for i = 2 . . . . .  n. It follows 

from the assumptions that 0 _< t,- _< l, i = 1 . . . . .  n and 

(1.3) 
n 

6 = voln ( S ¢3 H~-) = ~.~. ~.= ti. 

We show that H~ touches the surface 

(1.4) 

at x = t J n ,  i = 2 . . . . .  n, 

Xl = Xi + ~ Xi 
i = 2  

Xl = - ti + - -  ti . 
n i = 2  n i = 2  

Clearly, this point lies on the surface (1.2) and, moreover, this point is also an 

element of  H~. It is a convex combination of  the points t lel  and t i (el  + ei),  

i = 2 , . . .  ,n. We show that H~ is actually a tangent hyperplane of  (1.4). It is 

enough to show that the partial derivatives of (1.4) at that point coincide with the 

partial derivatives of  H~: 

Oxl _ 1 xj = 1 . 
Oxi n n xi ti 

By (1.3) we get that on the set of  all x such that 

1 fin! 1~ 
0_<xi<__-,  i = 2  . . . . .  n and n ,_  1 < xi 

n i = 2  

the surface (1.4) gives the boundary of  U H{ .  Therefore we get 

( ( ) )  )-, vol. S f) U H ~  > -n-; ,,~.!/n . ~ ,  " . ~ z  i~=2xJ dxz" " d x .  

where 

"Yk  - - - n - k + l  g i  ' gl i = k + l  

k = 2 , . . . , n -  1. 
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Since we have that 

1 ;1/"(i__~, )-'{in[n"-*+' " \\k-2 
(k -2) ,  .3, k Xi \ \ ~ n T  i~=kXi)) dXk 

= 1 ~ - ~ x i  l n f i X i  
( k -  1) T \ ~n! • i=k+l i=k+l 

we obtain 

vol . (S  O (UH~-)) _ 6n! 1 In - In . 
n" (n - Z .v/ n . -1  

Now we obtain the estimate from above. We blow up the simplex S by the factor 

n. We get here as above 

6 = vol~(nS n H~-) = ~ .  ti, 0 <_ ti <- n, i = 1 . . . .  ,n  
i=l 

and xi = t~/n for 0 _< xi - 1, i = 2 . . . . .  n, and ~n! /n  ~ <_ 1-I7=2 xi. 

By using the computation for the lower estimate we get 

voln S O (UH~-) G x - ~  <_ x i 

<_voln n S A ( U H ~ - ) N  x - - ~ < _  xi N I x i O < _ x i < _ l , i = 2  . . . . .  n 

=nnvoln  S A ( U H ~ , . ) A  x n ~ n ,_  1 _< xi 

[ 1 / )  
n x O < _ x i < _ - , i = 2  . . . . .  n 

n 

= n n  ~ 1 ( ~ n ~  n-1 
n--- ~ n~_---- i In ~n! ] 

. o  

= nn-I In ~-~.v] " 

Now it is left to estimate the volume of  the part where II'l=2 x~ <_ ~ n ! / n  ~ and 0 _< 

x~ _< 1, i = 2 . . . . .  n. We split this set again up into one set where at least one of  the 

xi, i = 2 . . . . .  n are less than ~ and therefore that volume is less than (n - 1)6, and 

a second set where all x~ are larger than 6. Clearly the volume of  the latter set is 

less than 
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• . .  d x z . "  dx. . . . .  - ~  xi dx3 . . ,  dx. 

n n 

We are proving (ii) and (iii) together. We use an inductive argument. The statement 

(ii) is easily checked in 112. Together with (i) this also proves (iii) in the case of  11z. 

Assume now that we have verified (ii) and (iii) for the dimension n - 1. We may 

assume that the simplex has equal sides and that z0 = -e~ and zl = e~. Therefore 

the points zz . . . . .  zn are contained in the subspace E orthogonal to el and E N S 

is the simplex spanned by 0, zz . . . .  , zn. Consider now the convex floating body 

(E  N S)E of  E f3 S with respect to the subspace E. We put 

(E  N S)~ x [ - e l , e ~ l  

and observe that any hyperplane H so tha t /2 / -  contains zo, z~ and so that H 

touches (E  Cl S)E x [--el,  el] cuts of f  a set of  volume larger than 4 - %  provided 

that 2e _< voln_~ (E Cl S). 

Now we conclude that 

( ( E N S ) \ ( E t ' I S ) ~ )  x [-e~,el] D-SN ( U H ~ )  

where 6 = 4-he and/:/b- contains at least z0 and zl.  Now we apply the induction 

hypothesis and obtain (ii) for the dimension n. (i) and (ii) for the dimension n give 

(iii) for the dimension n. • 

LE~MA 1.4 Let S be the simplex in R ~ spanned by zl . . . . .  z.+l. Assume that 

S has a nonempty interior and let I l l  and H2 be hyperplanes so that 

Zl . . . . .  Z,-1, E HI,H2, Z, E 1~I{ -, Zn+l E 1712. 

Let H~ be hyperplanes so that z~ E Hg- and z2 . . . . .  Z,+l E H~- so that 

vol , (S  (1 H~-) = & Then there is a constant C so that we have for 6 <_ ½voln(S) 

n, ( nn-lvoln(S) ) n-2 
voI , (S  f3 ( U H g )  fq H~- f) H ~ )  < C-~-~5 ?) In 

where C only depends on H1 and H2 and the volume of  S. 

PRoof. We proceed here as in the proof  of  Lemma 1.3. We may assume that 

zl = O, z2 = el, z3 = e~ + e2, . . . , Zn+l = el + e,.  For properly chosen a~ and az we 
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have H,  = It  E R" I t ._l = altn} and/-/2 = It E R" I t._l = a2t.}. Therefore we get 

as limits of  integration for the variable tn_~ that  a~ t.  < t._~ _< a2 t . .  

By the same reasoning as in the proof  of  Lemma 1.3 the boundary  of  U H ~  is 

below 

X 1 = X i + - -  X i 
i=2 n n  i=2 

on the set under consideration. 

The area where at least one of  the xi, i = 2 . . . . .  n is less than 6n ! /n n has n - 1 

dimensional volume less than (n - 1)3n ! /n  ~. Therefore we get 

voln(S ('1 (UH~-) (1 H~- t') H f )  

- -  - -  " " " X i  dx2" • • dx .  + n._---- T 
n n  n ! / n  n ~ ' a l X n  n ! / n  n n ! / n  n i=2 

= n"  ~ ln6-n~.v] + n "------i -<Cn---~-ldi ln~-~, v ] " • 

LEMMA 1.5. Let S be the simplex in R ~ spanned by xl . . . . .  x~+l. Assume  that 

S has a nonempty  interior and let H1 . . . . .  Hn be hyperplanes such that 

(1.5) x~ . . . . .  xk-x E Hk; xk E/7/~-; xk+x . . . .  ,x,,+L E f/~-, k = 1,2 . . . .  ,n.  

(i) Let H~ be hyperplanes so that xl E Hg- and x2 . . . . .  x.+~ E H {  so that 

vol,, (S M 11{) = & Then we have for  sufficiently small 6 > 0 

1 1 ( n " v o l , , ( S ) )  n- '  ( v o l ~ _ ( S ) )  "-z 
n! n "-1 6 In 6 - C 6  In 

_< vol~ S O (UH~-) N H . 

(ii) Let H~ be hyperplanes so that voln(S rl H~-) = tS; then we have 

vol (sn n 

--< n! n ~-~ t5 In ~5 + C~ In 6 

where C depends on the hyperplanes Hi, i = 1 . . . .  ,n and S. 
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PROOF. We m a y  assume that  [Ix, - xjl[2 = 1 if i ~ : j  and i, j = 1 . . . . .  n + 1. 

There  are (2) hyperplanes  Hx, xj, i ~ j ,  i,j = 2 . . . . .  n + 1, so tha t  Xk E Hxi,xj if  

k :~ i,j and ~ ~(x~ + xfl  E Hx~.x~. By this S is split up  into nV isometr ic  pieces S;, 

i = 1 . . . . .  n ! .  Each o f  these pieces contains Xl. Therefore  we get by  L e m m a  1.30) 

1 1 ( vol.(S) f -1 
voln(S i O (OHm-)) _> - -  - -  6 In 

n! n "-I 

N o w  we are choosing hyperplanes  Kxi,xj, i ~ j ,  i,j = 2 . . . . .  n + 1 such tha t  Xk E 

Kxi,xj if  k ~ i,j and 

n ,,i+ i, 2 K ~ i ' x j  - -  

I t  is easi ly seen tha t  this in poss ible .  M o r e o v e r ,  we m a y  a s sume  tha t  S N 
n + l  - (ni,j=zK~,xj) c Sl and that  $1 = S n ~rn,+l ~ +  - -  ~1 I i , j = 2  ~t l x i , x j J .  Now we subtract  the sets 

H~.xj n K~,xj. By L e m m a  1.4 we have 

v°In(S N (iN=2H+) n (UH~-)) > v°ln(Sl N(i.~N=12K~,xj) n (UH~-)) 

>-- v o l , ( S l  n (UH~-) )  

> - -  _ _  

n + l  

- ~_~ v o l , , ( s n K ~ , x j n H ~ . x j n  (OHm-)) 
i , j=2  

, ( 
n! n " - I  ~ In 

(ii) is shown in the same way as (i). We have to use L e m m a s  1.3 and  1.4. • 

LEMMA 1.6. Let P be a convex polytope with nonempty interior & R". There 
is a family of simplices Si, Ti, i = 1 . . . . .  On(P) and hyperplanes Hx, x E e x t ( P ) ,  

such that 
(i) P A H ; A H ~ -  = ~ i f x • z .  
(ii) ;~, n s j  = o if i =/: j. 
(iii) For every i there is x E e x t ( P )  so that Si c_ p 0 H ;  and P c_ Ti. 
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(iv) For every T,., i = 1 . . . . .  4~n (P)  there are hyperplanes Hi ,  j = 1 , . . . ,  n satis- 

f y ing  (1.5) o f  L e m m a  1.5 such that 

PROOF. We construct the simplices by induction. For n = 1, P is an interval and 

the statement obvious.  For  n ~ 2 we choose for  every extreme point  a hyperplane 

Hx so that  x E / 2 / 2  and 

P N H x n H  2 = 0 

for  x q: z. 

P n Hx has simplices Si, Ti, i = 1 . . . . .  4~,-1 ( P  n Hx) satisfying (i), (ii), (iii), and 

(iv) for  P N Hx. Moreover ,  we have for  P n Hx hyperplanes Hj,  j = 1 . . . . .  n - 1 

satisfying (iv). We define 

si = [x, gi] 

and Hj+I is the hyperplane spanned by x and - i H i.  For  H~ we choose Hx. Now we 

construct  7],.. The  extreme point  x and T,- generate a cone that  contains P. To get 

7],- we intersect this cone with a half  space that  contains P and whose defining 

hyperplane is parallel to H~. In this way we obtain for  every x a sequence o f  sim- 

plices. By the defini t ion of  4~n(P) it follows that  we get in fact ¢ , ( P )  simplices. 

LEMMA 1.7. Let  P be a convex po ly tope  with nonempty  interior in R ~. Then 

there are simplices Si, Ti, i = 1 . . . . .  ~b,(P) and  hyperplanes Hi ,  j = 1 . . . . .  n + 1 

so that 

(i) s i n s j = Q f o r i ~ j ,  

(ii) U~__"I P) Si = P,  

(iii) Si c_ T~ c_ p, i = 1 . . . . .  ~bn(P), 

(iv) c~,+1 Hi+ i I j = l  = Si ,  i = 1 . . . . .  ~ n ( P ) ,  

(v) Hi,  j = 1 . . . . .  n satisfy the hypothesis (1.5) o f  L e m m a  1.5 with respect 

to Ti. 

PROOF. We proceed by induct ion over the dimension n. For  n = 1, P is an in- 

terval and the choices are obvious.  For  n _ 2 we choose an interior point  x E P. 

Each n - 1 dimensional  face F o f  P has simplices Si, T~, i = 1 . . . .  , ~b,-i (F )  and 

hyperplanes Hj,  j = 1 . . . .  , n - 1 satisfying (i)-(v). Again,  we define 

s ,  = [x, g i ] .  
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The hyperplanes Hj are spanned by x and Hi,  j = 1 . . . . .  n. As H/+I we choose 

the hyperplane containing F. Now we choose an interior point g of P so that x is 

an interior point of 

and so that the center of gravity of Si is on the line through x and $. • 

PROOF OF THEOREM 1.2. Let Si, i = 1 . . . . .  4~,(P) be as given in Lemma 1.6 

and H~ hyperplanes so that vo l , (P  N HV) = 6. Let K~ be hyperplanes so that 

vol,(T~ N K~-) = 6 and K~- contains the only extreme point of T,- that is also an 

extreme point of P. Since P _ T~ we have for all i = 1 . . . . .  ~,  (P) 

UH - UKI-. 

This implies 

0n'r' ( )) 
vol . (P( ' l  (UH~-)) > ~] vol.}oi N [,.JK~- . 

i=1 \ 

Now we apply Lemma 1.5(i) and get 

1 1 ( n " v o l n ( S ) )  "-~ 
n! n ~-1 ~b~(P)b In 6 

- C4~n(p)6(ln V°l~(S) ) n-2. 

The opposite inequality is obtained in the same way by using Lemmas 1.5(ii) 

and 1.7. • 

LEMMA 1.8. Let P be a convex polytope in R" with nonempty interior. Let H~ 

denote hyperplanes so that vol . (P  f7 H~-) = 6. Then we have for all 6, 0 < 6 < 6n, 

¢,,(P) 
vol . (P \P~)  <_ n!n._l 

where c. and 6~ depend only on the dimension n. 

LEMMA 1.9 [J]. Let K be a convex body in R n. Then there is an ellipsoid 

£(z,r) with center z and radius r = (r~ . . . . .  r.), 

(1.6) g(z , r )  c K c g(z,n.r) .  
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PROOF OV LEMMA 1.8. We use a refinement of the construction of Lemma 1.7. 

The refinement consists of the specification how x and $ in the proof of Lemma 

1.7 are chosen. 
By Lemma 1.9 for any convex body in R n there is an ellipsoid g(z, r) satisfying 

(1.6). As x we choose the center z of the ellipsoid ~(z ,r) .  Next we choose 

(1.7) y as the center of gravity of Si. 

The line through y and x has two intersections with OK, namely y and another 

point y'. As .~ we choose y'. Because of (1.6) we have 

(1.8) IIx - YII2 -< nllx - 2112. 

By an affine transform we map Si onto [0, el, e2 . . . . .  en]. Because of (1.7) and 

(1.8) we get that the image of 7]. under the same affine transform contains the 

simplex spanned by 

~fk-1  k + l  
0 and kZ (el + ' " +  ek_~) + ~ e,, k = l  . . . . .  n. 

Therefore, if we apply Lemma 1.5 now to this construction, the constants will only 

depend on the dimension n. • 

2. Estimates from below for polyhedral approximation 

The symmetric difference ds(Ki ,Kz)  between two convex bodies Kz, K2 is 

voln (gl AK2). 

PROVOSITION 2.1. Let K be a convex body in R n. Then we have for  all poly- 

topes P, P c_ K, and all 6, 0 < 6 < 6~, 

1 
vol~(K\K~) _< ds(K,P)  

provided that 

vol~(KkK~) > 2 n!nn_--------- i4~n(P) 6 (ln vol~(P) ) ~-1 + c~4Jn(P)6 (ln v°l~(P) f - 2 6  

where cn is a constant that depends only on n. 

Pgoor. Since P c_ K we have P~ c_ K~. Therefore we get 

voln ( K \ P )  >_ voln (K\K~)  - voln (P\K~)  > voln (K\K~) - vol n ( P \ P , ) .  

Now we apply Lemma 1.8. • 
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COROLLARY 2.2. Let K be a convex body in R" and P, P c_ K, a polytope with 

nonempty interior. Then we have for  sufficiently large 4~,(P) 

PROOF. 

ds(K,P) >DnSdPn(P)-2/(n-1)(faKr(X)l/(n+l)dg(x))(n+l)/(n-l) 

x (ln 4~i~)v:f:l:)::f~'df:~:~))-2, 

By Theorem 1 in [Schii-W] we have 

vo l .  ( K \ K ~ )  1 fa (2.1) lim 6z/in+l) = -- ~(x)l/("+l)d~(x) 
6--*0 Cn K 

with 

Cn = 2 (  1 
n + l  

n 1 \2/(n+l) 
- -  voln _, (B2 - ) ) 

The hypothesis of Proposition 2.1 is fulfilled if 

(2.2) 

with 

1 ( v o l n ( P ) )  -"-I 
~__< ~ t  In t 

[1 n!nn-I fa I (n+l)/(n-l) 
t 8 c.4~.(P) x K(x)l/("+l)d~(x) 

and t is sufficiently small, i.e. ~.(P) is sufficiently large. Now we use ds(K,P) >- 

½vol(K\K6), (2.1), and (2.2). • 

COROLLARY 2.3. Let K be a convex body in R n, and P,P ~ K, a simplicial 

polytope. Then we have for sufficiently large #fac._l (P) 

(fo )(n+l)/(n--l) ds(K,P) >- Dn3(#fac._l(P)) -z/("-l) r(x)l/("+l)d#(x) 
K 

#fac.-l(P)vol.(P) ("-1)/("+1))--2. 
X In 

ox ~ (x)l/("+l) d~(x) 

To prove Corollary 2.3 we use Corollary 2.2 and ¢.(P) = n!#fac._l(P). • 
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